Bachelor in Geomatics

Proposed to be offered under DISTANCE MODE

By

Department of Surveying & Land Studies

(Facilitator: Department of Open and Distance Learning- DoDL)

THE PAPUA NEW GUINEA UNIVERSITY OF

TECHNOLOGY

Private Mail Bag, Lae 411, Papua New Guinea

Overview of Department of Surveying and Land Studies

The Department of Surveying & Land Studies is primarily involved in the process of developing human resources adept in the holistic management of land resources. Papua New Guinea is endowed with enormous land resources (vis-à-vis population); which are grossly under-utilized. Here is the relevance of the department that produces the entire gamut of geomatics and land management professionals - starting from the discipline of 'Surveying', Geographical Information Science / Systems to the property management /valuations experts. The Department at present offers degree programs in the above fields as well as Master's program: M.Sc. Remote Sensing & GIS (in distance mode). Now the Department proposes to commence a B.Sc. Program in Geomatics through distance mode.

The human resources developed in the department have wide exposure to the state of the art technology of geomatics engineering (e.g. Remote Sensing, GIS, GPS surveying, Total Station surveying etc.) and land management in their respective disciplines. The application of technology is emphasized, as is the role of the professionals in the development of PNG. The Department has been producing graduates for about four and half decades and many graduates occupy senior positions in Government and the private sector in PNG and the Pacific Region.

The courses offered in the Department are specific but considerable overlapping of discipline areas is encouraged with the aim of producing broad based graduates. The Department has already created a state-of-the-art Remote Sensing lab with adequate hardware and software support, juxtaposed to the augmented Spatial Data Infrastructure lab. Also the department has good existing facilities including a comprehensive digital mapping, geographic information systems and remote sensing laboratory, state of the

art Global Navigation Satellite System (GNSS) receivers, using the GPS, GLONASS, Galileo or Beidou system technology and software, a spatial information science/cartographic processing laboratory and automated surveying systems in addition to the traditional surveying and mapping facilities.

Objectives of B.Sc. in Geomatics

Geomatics is the fusion of geography and informatics activities and services involved in the collection, analysis, management, and integration of location-based data to enable improved decision and policy making. The Geomatics program will include courses in geographic information systems, remote sensing, photogrammetry, global positioning surveying, spatial statistics, computer science. The computer science component (especially the use of application softwares) will give graduates the strongest advantage in the field of Geomatics. Students completing this program will be able to go beyond the competent use of existing Geomatics tools to develop applications involving spatial database development and management, data dissemination, spatial analysis, decision support, and modeling.

Given the severe paucity of spaces in tertiary education system in the country, only 20% of students in Grade 12 are considered for universities and colleges throughout the country (1in 5). This course will open another opportunity to continue further studies.

Individuals with bachelor's degrees in geomatics will have diverse employment opportunities. Careers may include: Geospatial analyst, GIS technician, Geodesy research associate, Survey operations coordinator etc.

Admission requirements:

B grades in Major Mathematics, English, Physics, Geography and Information Technology. (Recommended courses: Introduction to Computer Science is recommended)

Duration of the course and award:

The program 'B. Sc in Geomatics' to be offered in DISTANCE MODE shall have a duration of a little over four years (nine semesters) with the session starting from November and ending in November/December. The residential (physical contact) period is proposed to be in the months of November-December while, depending upon the situation.

A student who will successfully completing entire four years will be awarded a Bachelor in Geomatics.

COURSE STRUCTURE

COUNSE STRUCTURE	Year 3
Hours(Lec., Tut., Lab) CCC Semester 1 (R) MAE 101 Introductory mathematics for Geomatics (4-1-0) 20 PHE 103 Introductory Physics for Geomatics (4-1-1) 21 CSE 105 Computer skills fundamentals for Geomatics (2-0-4) 15 GEOM 107 Introduction to Surveying (1-0-4) 10 GEOM 109 Introduction to Remote Sensing (3-0-0) 13 Total 79	Semester 1 (R) GEOM 301: Satellite Image enhancement, classification & mapping (1-2-4) 15 GEOM 303: Programming for Geomatics (1-0-4) 10 GEOM 305: Engineering Survey (1-0-4) 10 GEOM 307: Cadastral surveying principle and practice (1-0-4) 10 GEOM 309: Introduction to Mapinfo professional (0-2-6) 13 Total 58
Semester 2 (D) GEOM 102: Introduction to GIS (3-0-0) 13 GEOM 104: Thermal, Hyper spectral and Microwave Remote Sensing (3-0-0) 13 GEOM 106: Survey Computations (3-0-0) 13 GEOM 108: Map reading and projection (3-0-0) 13 GEOM 110: Introduction to Global positioning System (3-0-0) 13 Total 65	Semester 2 (D) GEOM 302: Statistics for Geomatics (2-1-0) 11 GEOM 304: Remote Sensing application (3-0-0) 13 GEOM 306: Marine geomatics and resource management (3-0-0) 13 GEOM 308: Arial photography and Photogrammetric measurements (3-0-0) 13 GEOM 310: Introduction to urban and regional planning (3-0-0) 13 Total 63
Year 2 Semester 1 (R) GEOM 201: Satellite Image interpretation using Erdas Imagine (1-2-4) 15 GEOM 203: GIS practice using ArcGIS (1-2-4) 15 GEOM 205: Introduction to Geomatics (1-0-6) 13 GEOM 207: Practice on Global Navigation System (GPS/GNSS) (1-0-6) 13 GEOM 209: Computer Aided Drafting - Autocad (1-0-4) 10 Total 66	Year 4 Semester 1 (R) GEOM 401: Spatial data modelling, analysis & mapping -ArcGIS (0-2-4) 10 GEOM 403: Subdivision principle and design (1-0-4) 10 GEOM 405: Satellite Geodesy (2-2-0) 13 GEOM 407: Writing a Research Paper and managing research project (2-2-0) 13 GEOM 409: RS/GIS/Geomatics project proposal (1-0-5) 12 Total 58 Semester 2 (D) GEOM 402: Application of Geoinformatics
Semester 2 (D) GEOM 202: Surveying and mapping Practice (3-0-0) 13 GEOM 204: Digital Image processing (3-0-0) 13 GEOM 206: Land Tenure and Administration (3-0-0) 13 GEOM 208: Geodesy and Geodetic positioning (3-0-0) 13 GEOM 210: Data base management (3-0-0) 13 Total 65	(3-0-0) 13 GEOM 404: Geomatics in Hydrographic survey (3-0-0) 13 GEOM 406: Transportation Engineering (3-0-0) 13 GEOM 409: RS/GIS/Geomatics project progress (0-0-10)15 Total 54 Semester 3 (R) GEOM 411: Spatial data handling using open source GISS/W (0-2-4) 10 GEOM 409: RS/GIS/Geomatics project Implementation (0-0-15) 22 Total 32

TOTAL- 22 Residential (5R) and 19 distance (4D) courses: 540CCC

Program Outcome (PO) storing, managing and accessing these				
P01	Have a sound knowledge and		large volumes of data.	
	understanding of the use and	P08	Be conversant with various geomatics	
	application of geospatial technologies		commercial and open source software	
	in solving geographic problems of		and, utilize available computer	
	various domains, e.g., environmental,		technology in the different tasks in	
	natural resources, land management		Geomatics.	
	and administration, government,	P09	Be knowledgeable of the various	
<u> </u>	health, utilities, transport, etc.		methods of Geospatial Analysis, GIS	
PO2	Be competent in the foundation of		and Cartographic Modelling using	
	surveying, essential GIS operations		spatial and aspatial data in solving	
	and demonstrate sound knowledge on		geographic problems.	
	the nature and properties of	PO	Provide a sound foundation in the	
	geospatial data	10	principles and professional practices	
P03	Have the foundation of remote		of surveying and mapping including a	
	sensing, able to perform data		spatial measurement and assessment	
	collection for RS and GIS analyses,	PO	Develop an appreciation of the factors	
	including GPS, satellite imagery, and	11	affecting the tenure and land use	
	handling collateral data like		decision in Papua New Guinea and the	
	topographic maps, scanned		Pacific Island Nations;	
P04	photographs, etc.,	PO	Prepare graduates to be able to	
P04	Be conversant in technology involved in geodetic, cadastral, engineering and	12	communicate, exchange and share	
	construction, mining and		information effectively with other	
	hydrographic surveys toward land		professionals and community.	
	administration, property	PO	Educate students so that after a short	
	development and value addition. Be	13	period of industrial training they can	
	able to competently communicate		play an effective role in the practice	
	above geospatial information		and development of the geomatics	
	collected.		profession in PNG and the Pacific Island Nations; continue further	
P05	Know how to design, develop and		academic and professional	
	manage GIS and remote sensing		development to suit fast changing	
	application projects from the		demands of the marketplace.	
	numerous possible applications	РО	An ability to work on	
	including, land and natural resource	14	multidisciplinary teams and	
	developments, environmental		comprehend his/her scope of work,	
	monitoring and management.		deliverables and issues in which able	
P06	Have sound knowledge of the physics		to lead the team towards goal	
	and mathematics associated with	РО	Possess and understanding	
	surveying, GIS and Remote sensing	15	professional, safety and ethical	
	processes; able to do survey		responsibilities	
	computations.	PO	Possess a comprehensive knowledge	
P07	Be able to differentiate between	16	of contemporary issues, adapt to	
	various forms of remote sensing data		changing technical scenarios, socio-	
	– optical IR, thermal, microwave,		economic, political landscape, their	
	hyperspectral; sensors, resolution;		fluctuation cycles.	
	apply appropriate data processing			
	and design expedient strategies for			