Course(s)	Bachelor of Mechanical Engineering (NQF Level 8)		
Subject Name	Heat Transfer		
Subject Code	ME313		
Duration	13 teaching weeks, 1 examination week, 1 mid-semester week		
Contact Hours	6 hours per week (4 Lec / 1 Tut / 1 Lab)		
Credit Points	20		
Delivery Mode	On campus		
Prerequisites	ME211 Basic Thermodynamics and Cycles		
	ME223 Fluid Mechanics		
Co-requisites	Nil		
Subject Coordinator	ТВА		

Synopsis

The subject enables students to acquire basic understanding of fundamental of heat flow. Students will apply their knowledge in solving problems involving conduction, convection and radiation heat transfers. Students will be able to apply their knowledge to understand heat transfer systems in practical industries and will be equipped to analyse/design heat transfer systems/surfaces and heat exchangers.

Subject Topics

- 1. Introduction
- 2. One dimensional steady state conduction
- 3. Forced convection
- 4. Free convection
- 5. Radiation
- 6. Heat exchangers

Subject Learning Outcomes (SLOs)

On completion of this subject students will be able to:

- 1. Describe the mechanisms of heat transfer between elements of a system
- 2. Determine the correct assumptions and approximations for tackling practical situations
- 3. Analyse one-dimension conduction problems
- 4. Solve problems involving one or more modes of heat transfer
- 5. Apply knowledge and useful information gained on design and analysis of heat transfer systems .
- 6. Working in teams to undertake laboratory exercises, analysing and discussing the outcomes and communicate those via professional reports.

Assessment Tasks and Weightings

To obtain a pass grade in this Subject at least 50% overall must be achieved, and at least 40% achieved in the final examination. Students must also refer to the Subject Assessment Details.

Assessment 1 – Lab/Project Concept Report: A team based or individual component report outlining individual or team formation. Team based report outlining formation and member roles, project selection, team and member action plan and a schedule of future activities to achieve the outcome. The report contributes 20% towards the final grade for the subject.

Assessment 2 – Assignments: The assignments are intended to support students achieving the learning outcomes for the Subject and will contribute 20% towards the final grade for the subject.

Assessment 3 – Class Test: The Test contributes 20% towards the final grade for the subject and evaluates progress towards achievement of learning outcomes.

Assessment 4 - Final Examination: The individual components of final examination enable final evaluation of achievement of learning outcomes and contribute 40% towards the final grade for the subject

It is important that all students familiarise themselves with the University of Technology Assessment Guidelines including those on plagiarism in the Academic Integrity Policy at:

http://asix.unitech.ac.pg/apps/pnguot/?q=unitech/policies

Subject Mapping

Subject Learning Outcomes (SLO) are mapped to each of the PNG National Qualifications Framework (NQF), Course Learning Outcomes (CLO), Unitech Graduate Attributes (GA), Assessment Tasks (AT) and Engineers Australia (EA) Stage 1 Competencies.

SLO	SLO to NQF	SLO to CLO	SLO to GA	SLO to AT	SLO to EA Stage 1 Competencies
1	Applications, Knowledge and skills	1, 2, 3	1, 2	2,3,4	1.1, 1,2,1.3
2	Applications, Knowledge and skills	2, 3, 5	2, 6	2,3,4	1.1, 1,2,1.3
3	Applications, Knowledge and skills	2, 3, 5	1, 2, 5,6	2,3,4	2.1, 2.2
4	Applications, Knowledge and skills	2, 3, 5	1, 2, 5,6	2,3,4	1.1,1.2,1.3
5	Applications, Knowledge and skills	1, 3, 4, 5, 6, 8	2,6	2,3,4	2.1, 2.2, 2.3

SUBJECT OUTLINE: ME313 HEAT TRANSFER						
6	Applications, Knowledge and skills	3, 5, 7, 8, 9	3, 4	1	3.1, 3.2,3.3, 3.4.3.5	

Engineers Australia Stage 1 Competencies

1. KNOWLEDGE AND SKILL BASE	2.ENGINEERING APPLICATION ABILITY	3. PROFESSIONAL AND PERSONAL ATTRIBUTES
1.1 Comprehensive, theory- based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.	2.1 Application of established engineering methods to complex engineering problem solving.	3.1 Ethical conduct and professional accountability.
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline.	2.2 Fluent application of engineering techniques, tools and resources.	3.2 Effective oral and written communication in professional and lay domains.
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline.	2.3 Application of systematic engineering synthesis and design processes.	3.3 Creative, innovative and pro-active demeanour.
1.4 Discernment of knowledge development and research directions within the engineering discipline.	2.4 Application of systematic approaches to the conduct and management of engineering projects.	3.4 Professional use and management of information.
1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline.		3.5 Orderly management of self, and professional conduct.
1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline		3.6 Effective team membership and team leadership.

Graduate Statement

The mechanical engineering graduate will have the skills and ability to systematically apply the engineering knowledge in an ethical and morally responsible manner in providing practical and sustainable solutions to engineering problems while upholding a level of sensitivity to social, cultural, legal and environmental issues in society.

Mechanical Engineering Course Learning Outcomes

The following table is included to demonstrate to mechanical engineering students that their Course Learning Outcomes address all EA Stage 1 Competencies.

The mapping matrix for all subject learning outcomes within the Course, against EA Stage 1 Competencies, provides more detailed information. That matrix is provided separately to students.

Course Learning Outcome	Engineers Australia Stage 1 Competencies
1. Possession of a deep understanding of the sciences, math, information systems and engineering fundamentals that underpin the mechanical engineering discipline.	1.1, 1.2
2. An in-depth understanding of the body of knowledge that forms the mechanical engineering discipline.	1.2, 1.3
3. Collection, synthesis and application of information within the mechanical and related engineering disciplines.	1.4, 1.5, 2.1, 2.3, 2.4, 3.4
4. Undertaking research, analysis & evaluation of ideas and concepts within mechanical engineering.	1.3, 1.4, 1.6, 2.1, 2.3, 2.4, 3.2, 3.4
5. Applying problem solving skills to complex mechanical engineering systems and processes.	1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.3
6. Undertake mechanical engineering design and manage engineering projects.	1.6, 2.2, 2.4, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6
7. Communication via multiple media to diverse audiences, undertaking team roles, teamwork and providing team leadership.	2.4, 3.2, 3.3, 3.4, 3.5, 3.6
8. Behaving in an ethical and professional manner and respecting others.	1.6, 2.4, 3.1, 3.4, 3.5, 3.6
9. Being cognisant of the importance of sustainability and the environmental impact of engineering.	1.5, 1.6, 3.1, 3.3, 3.4

Unitech Graduate Attributes

Attribute	Academic dimension	Personal Dimension	Transferable Dimension
1. Lifelong learner	Sustained intellectual curiosity and use of feedback to reflect on their own work.	Sets aspirational goals for personal improvement and career growth.	Takes responsibility for one's learning and development.
2. Critical thinker	Uses rules of inference to	Calmly uses logic and critical	Ability to find solutions to problems by using

	analyse complex issues and find solutions.	thinking, and not emotion, in all situations.	logical and imaginative thinking.
3. Effective communicator	Ability to discuss and debate issues articulately and confidently and convincingly.	Character of producing high quality written essays and oral presentations.	Ability to communicate and negotiate with others and to listen to them.
4. Cultural modernist	Familiarity with international standards and world cultures and human rights.	Tolerance of the religions and cultures of others.	Ability to work in a multicultural setting and comprehension and tolerance of religious and cultural differences.
5. Moral uprightness	Understand and act upon the ethical responsibilities of their actions.	Character of acting in a morally upright way in all situations.	Professional behaviour at all times.
 Technologically savvy 	Familiarity and use of technologies appropriately.	Keeping up to date with innovations.	Character of accepting new technology and quickly adapting to it.

Student Workload

The total workload for the subject for the 'average' student is a nominal 150 hours, based on a 15 week semester with 13 weeks of teaching as per the PNG National Qualification Framework.

Subject Text

John H Lienhard IV and John H Lienhard V., A heat transfer text book, Fourth Ed., Phlogiston Press, Cambridge Massachusetts, MIT 2018.

References

Moran M.J., Shapiro H.N., Boettner D.D. and M.Bailey, Fundamentals of Engineering Thermodynamics, 7th Ed., John Wiley * Sons, 2011.

Eastop, T.D. & McConkey, A., Applied Thermodynamics for Engineering Technologists, 5th Ed., Prentice Hall, 1993.

Readings

Rogers, G.F.C, & Mayhew, Y.R., Thermodynamic and Transport Properties, 5th Ed., (Basil Blackwell, 1995)

YouTube Clips

The following YouTube Clips should help augment your weekly lectures

- 1. <u>https://www.youtube.com/watch?v=GRY6MpN2QW8</u>
- 2. <u>https://www.youtube.com/watch?v=kNZi12OV9Xc</u>
- 3. <u>https://www.youtube.com/watch?v=tDs4cFOqTdM</u>

Relevant Unitech Policies

It is important that all students familiarise themselves with the PNGUOT Assessment Guidelines including those on plagiarism and other relevant policies. These policies are viewed by visiting the PNGUOT website:

http://asix.unitech.ac.pg/apps/pnguot/?q=unitech/policies