Programs	Bachelor of Mechanical Engineering (NQF Level 8)
Subject Name	Metal Cutting and Machine Tools
Subject Code	ME322
Duration	13 Teaching Weeks, 1 Examination Week and 1 Mid Sem Week.
Contact Hours	6 hours per week (4 Lec/1 Tut/1 Lab)
Credit Points	20
Delivery Mode	On campus
Prerequisites	ME314- Manufacturing Processes and Design
Co requisites	Nil
Academic Staff	ТВА

Synopsis

Metal Cutting and Machine Tools enables students to demonstrate tool geometry and define tool angles in different systems. Students will be able to differentiate between Oblique and Orthogonal cutting and illustrate the mechanism of chip formation in machining ductile and brittle materials. They will gain knowledge on constructional details and application of various types of machine tools along with their relative advantages and disadvantages. They will be introduced to various gear manufacturing and surface finishing process. They will be able to explain various non-traditional machining process and their applications. They will be aware of fundamentals of CNC part programming. Various principles for designing of cutting tools and Jigs and fixtures will be introduced to the students.

Subject Topics

- 1. Theory of Metal Cutting
- 2. Geometry and Design of Single Point Cutting Tools
- 3. Features and Specifications of Machine Tools, Jigs and Fixtures
- Manufacturing of Gears
- 5. Non-traditional Machining Practices
- 6. CNC Machine Tools in Advanced Machining Practices

Subject Learning Outcomes (SLOs)

After completing this unit students will be able to

- 1. Design cutting tools and assess their lives.
- 2. Differentiate between Oblique and Orthogonal cutting and illustrate the mechanism of chip formation in machining ductile and brittle materials.
- 3. Estimate machining times required for various products.
- 4. Manufacture gears.
- Demonstrate an understanding of non-traditional machine tools and their application in machining and surface finishing process.
- Write part programming codes to cut simple geometries in CNC Machine tools.
- 7. Working in teams to undertake laboratory exercises, analysing and discussing the outcomes and communicate those via professional reports

Assessment Tasks and Weightings

To obtain a pass grade in this Subject at least 50% overall must be achieved, and at least 40% achieved in the final examination. Students must also refer to the Subject Assessment Details.

Assessment 1–Lab/Project Concept Report: A team based or individual component report outlining individual or team formation. Team based report outlining formation and member roles, project selection, team and member action plan and a schedule of future activities to achieve the outcome. The report contributes 20% towards the final grade for the subject.

Assessment 2 – Assignments: The assignments are intended to support students achieving the learning outcomes for the Subject and will contribute 20% towards the final grade for the subject.

Assessment 3 – Class Test: The Test contributes 20% towards the final grade for the subject and evaluates progress towards achievement of learning outcomes.

Assessment 4- Final Examination (E): The individual components of final examination enable final evaluation of achievement of learning outcomes and contribute 40% towards the final grade for the subject

It is important that all students familiarise themselves with the University of Technology Assessment Guidelines including those on plagiarism in the Academic Integrity Policy at:

http://asix.unitech.ac.pg/apps/pnguot/?q=unitech/policies

Subject Mapping

Subject Learning Outcomes (SLO) are mapped to each of the PNG National Qualifications Framework (NQF), Course Learning Outcomes (CLO), Unitech Graduate Attributes (GA), Assessment Tasks (AT) and Engineers Australia (EA) Stage 1 Competencies.

SLO	SLO to NQF	SLO to CLO	SLO to GA	SLO to AT	SLO to EA Stage 1 Competencies
1	Applications, Knowledge and skills	1, 2 and 6	2, 4 and 6	2,3,4	1.2, 1.3 and 2.3
2	Applications, Knowledge and skills	2, 3	1 and 6	2,3,4	1.1, 1.3, 1.4, 2.1, 2.3
3	Applications, Knowledge and skills	1, 3, 4, 5,6	2 and 6	2,3,4	1.2, 1.3, 2.2
4	Applications, Knowledge and skills	2, 3, 4	1 and 4	2,3,4	1.3, 1.4, 1.5, 2.1, 2.2, 3.3
5	Applications, Knowledge and skills	3, 4, 6, 9	1, 4 and 6	2,3,4	1.4, 1.5, 1.6, 2.2, 3.3
6	Applications, Knowledge and skills	3, 4, 6, 9	1, 4 and 6	2,3,4	1.4, 1.5, 1.6, 2.2, 3.3
7	Applications, Knowledge and skills	6, 7, 8	2, 3, 5 and 6	1	2.4, 3.2, 3.5, 3.6

Engineers Australia Stage 1 Competencies

1. KNOWLEDGE AND SKILL BASE	2.ENGINEERING APPLICATION ABILITY	3. PROFESSIONAL AND PERSONAL ATTRIBUTES
1.1 Comprehensive, theory- based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.	2.1 Application of established engineering methods to complex engineering problem solving.	3.1 Ethical conduct and professional accountability.
1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline.	2.2 Fluent application of engineering techniques, tools and resources.	3.2 Effective oral and written communication in professional and lay domains.
1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline.	2.3 Application of systematic engineering synthesis and design processes.	3.3 Creative, innovative and pro-active demeanour.
1.4 Discernment of knowledge development and research directions within the engineering discipline.	2.4 Application of systematic approaches to the conduct and management of engineering projects.	3.4 Professional use and management of information.

1.5 Knowledge of engineering	3.5 Orderly
design practice and contextual	management of self,
factors impacting the	and professional
engineering discipline.	conduct.
1.6 Understanding of the	3.6 Effective team
scope, principles, norms,	membership and team
accountabilities and bounds of	leadership.
sustainable engineering	
practice in the specific	
discipline	

Graduate Statement

The mechanical engineering graduate will have the skills and ability to systematically apply the engineering knowledge in an ethical and morally responsible manner in providing practical and sustainable solutions to engineering problems while upholding a level of sensitivity to social, cultural, legal and environmental issues in society.

Mechanical Engineering Course Learning Outcomes

The following table is included to demonstrate to mechanical engineering students that their Course Learning Outcomes address allEA Stage 1 Competencies.

The mapping matrix for all subject learning outcomes within the Course, against EA Stage 1 Competencies, provides more detailed information. That matrix is provided separately to students.

Course Learning Outcome	Engineers Australia Stage 1 Competencies	
1. Possession of a deep understanding of the sciences, math, information systems and engineering fundamentals that underpin the mechanical engineering discipline.	1.1, 1.2	
2. An in-depth understanding of the body of knowledge that forms the mechanical engineering discipline.	1.2, 1.3	
3. Collection, synthesis and application of information within the mechanical and related engineering disciplines.	1.4, 1.5, 2.1, 2.3, 2.4, 3.4	
 Undertaking research, analysis & evaluation of ideas and concepts within mechanical engineering. 	1.3, 1.4, 1.6, 2.1, 2.3, 2.4, 3.2, 3.4	
5. Applying problem solving skills to complex mechanical engineering systems and processes.	1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.3	
6. Undertake mechanical engineering design and manage engineering projects.	1.6, 2.2, 2.4, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6	

7. Communication via multiple media to diverse audiences, undertaking team roles, teamwork and providing team leadership.	2.4, 3.2, 3.3, 3.4, 3.5, 3.6
8. Behaving in an ethical and professional manner and respecting others.	1.6, 2.4, 3.1, 3.4, 3.5, 3.6
9. Being cognisant of the importance of sustainability and the environmental impact of engineering.	1.5, 1.6, 3.1, 3.3, 3.4

Unitech Graduate Attributes

Attribute	Academic dimension	Personal Dimension	Transferable Dimension
1. Lifelong learner	Sustained intellectual curiosity and use of feedback to reflect on their own work.	Sets aspirational goals for personal improvement and career growth.	Takes responsibility for one's learning and development.
2. Critical thinker	Uses rules of inference to analyse complex issues and find solutions.	Calmly uses logic and critical thinking, and not emotion, in all situations.	Ability to find solutions to problems by using logical and imaginative thinking.
3. Effective communicator	Ability to discuss and debate issues articulately and confidently and convincingly.	Character of producing high quality written essays and oral presentations.	Ability to communicate and negotiate with others and to listen to them.
4. Cultural modernist	Familiarity with international standards and world cultures and human rights.	Tolerance of the religions and cultures of others.	Ability to work in a multicultural setting and comprehension and tolerance of religious and cultural differences.
5. Moral uprightness	Understand and act upon the ethical responsibilities of their actions.	Character of acting in a morally upright way in all situations.	Professional behaviour at all times.
6. Technologically savvy	Familiarity and use of technologies appropriately.	Keeping up to date with innovations.	Character of accepting new technology and quickly adapting to it.

Student Workload

The total workload for the subject for the 'average' student is a nominal 150 hours, based on a 15-week semester with 13 weeks of teaching as per the PNG National Qualification Framework.

Subject Text

S. Kalpakjian and S.R. Schmid, Manufacturing Engineering and Technology, 6th Ed., Pearson Education (Singapore) Pvt. Ltd., 2010.

References

P.N.Rao, Manufacturing Technology Volume II, 3rd Ed., McGraw Hill Education (India) Private limited, 2013

Readings

A B Chattopadhayay, Machining and Machine Tools, 3rd Ed., Wiley, 2011.

YouTube Clips

The following YouTube Clips should help augment your weekly lectures.

Single point cutting tool geometry at:

https://www.youtube.com/watch?v=bUrp8JMRwx4

https://www.youtube.com/watch?v=jskReAnzjaQ

Mechanics of Metal Cutting at:

https://www.youtube.com/watch?v=dVGrNfZBsf0&t=31s

Non Traditional Machining Process at:

https://www.youtube.com/watch?v=Vw-cUiBLuHw https://www.youtube.com/watch?v=qVcwT0FfAlc https://www.youtube.com/watch?v=PaYInS9axxw

Relevant Unitech Policies

It is important that all students familiarise themselves with the PNGUOT Assessment Guidelines including those on plagiarism and other relevant policies. These policies are viewed by visiting the PNGUOT website:

http://asix.unitech.ac.pg/apps/pnguot/?q=unitech/policies